Utility of immunoinformatics in epitope mapping for vaccine and therapeutic design

Authors

  • Carlos Alfredo Miló Valdés Universidad de Ciencias Médicas de Pinar del Río. Hospital Pediátrico Provincial Docente “Pepe Portilla”, Departamento de Inmunología. Pinar del Río, Cuba. Author https://orcid.org/0000-0003-1527-4541
  • Lidia Cecilia Pérez Acevedo Centro de Inmunología Molecular. La Habana, Cuba. Author https://orcid.org/0000-0002-9477-399X
  • Adrián Alejandro Vitón Castillo Universidad de Ciencias Médicas de Pinar del Río. Hospital Pediátrico Provincial Docente “Pepe Portilla”, Departamento de Inmunología. Pinar del Río, Cuba. Author https://orcid.org/0000-0002-7811-2470

DOI:

https://doi.org/10.56294/evk2025152

Keywords:

Immunoinformatics, Vaccines, Epitopes, Antigens, Computational Biology, Vaccine Development

Abstract

Epitope identification is largely the basis for the development of new vaccine candidates and immunotherapies. However, traditional methods for epitope identification present certain limitations in terms of time and high costs, hence experimentation in this field is targeted and rationalized. The development of omics, as well as the introduction of bioinformatics techniques and tools in biomedical specialties, has allowed the development of immunoinformatics, which has the capacity to speed up the discovery process. The present communication aims to describe the potential of immunoinformatics in epitope mapping for the design of vaccines and therapies.

References

1. Keen MM, Keith AD, Ortlund EA. Epitope mapping via in vitro deep mutational scanning methods and its applications. Journal of Biological Chemistry [Internet]. enero de 2025 [citado 27 de mayo de 2025];301(1):108072. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0021925824025742

2. Patronov A, Doytchinova I. T-cell epitope vaccine design by immunoinformatics. Open Biol [Internet]. enero de 2013 [citado 27 de mayo de 2025];3(1):120139. Disponible en: https://royalsocietypublishing.org/doi/10.1098/rsob.120139

3. Habib A, Liang Y, Xu X, Zhu N, Xie J. Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection. IJMS [Internet]. 19 de febrero de 2024 [citado 27 de mayo de 2025];25(4):2432. Disponible en: https://www.mdpi.com/1422-0067/25/4/2432

4. Zafar S, Bai Y, Muhammad SA, Guo J, Khurram H, Zafar S, et al. Molecular dynamics simulation based prediction of T-cell epitopes for the production of effector molecules for liver cancer immunotherapy. Sehgal SA, editor. PLoS ONE [Internet]. 3 de enero de 2025 [citado 27 de mayo de 2025];20(1):e0309049. Disponible en: https://dx.plos.org/10.1371/journal.pone.0309049

5. Rosario-Cruz R, Domínguez-García DI, López-Silva S, Rosario-Domínguez F. Immunoinformatics and tick vaccinology. Explor Immunol [Internet]. 24 de febrero de 2023 [citado 27 de mayo de 2025];1-16. Disponible en: https://www.explorationpub.com/Journals/ei/Article/100385

6. Ansari H, Raghava GP. Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res [Internet]. 2010 [citado 27 de mayo de 2025];6(1):6. Disponible en: http://www.immunome-research.com/content/6/1/6

7. Moise L, Gutiérrez AH, Khan S, Tan S, Ardito M, Martin WD, et al. New Immunoinformatics Tools for Swine: Designing Epitope-Driven Vaccines, Predicting Vaccine Efficacy, and Making Vaccines on Demand. Front Immunol [Internet]. 5 de octubre de 2020 [citado 27 de mayo de 2025];11:563362. Disponible en: https://www.frontiersin.org/article/10.3389/fimmu.2020.563362/full

8. I AA, G VRT, Aguilar-S Á, T ÁHS. Promesas y limitaciones de las vacunas génicas. Revista Mexicana de Ciencias Farmacéuticas [Internet]. 2006 [citado 27 de mayo de 2025];37(2):26-37. Disponible en: https://www.redalyc.org/articulo.oa?id=57937205

9. Tong JC, Ren EC. Immunoinformatics: Current trends and future directions. Drug Discov Today [Internet]. julio de 2009 [citado 27 de mayo de 2025];14(13):684-9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7108239/

10. Prawiningrum AF, Paramita RI, Panigoro SS. Immunoinformatics Approach for Epitope-Based Vaccine Design: Key Steps for Breast Cancer Vaccine. Diagnostics (Basel). 28 de noviembre de 2022;12(12):2981.

11. Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, et al. High-content CRISPR screening. Nat Rev Methods Primers [Internet]. 10 de febrero de 2022 [citado 27 de mayo de 2025];2(1):8. Disponible en: https://www.nature.com/articles/s43586-021-00093-4

12. De Dios Hernández D. In silico exploration of potential breast cancer drugs. Interamerican Journal of Health Sciences [Internet]. 1 de abril de 2024 [citado 27 de mayo de 2025];4:171. Disponible en: https://ijhsc.uai.edu.ar/index.php/ijhsc/article/view/47

13. Immune Epitope Database and Analysis Resource (IEDB) | NIAID: National Institute of Allergy and Infectious Diseases [Internet]. 2024 [citado 27 de mayo de 2025]. Disponible en: https://www.niaid.nih.gov/research/immune-epitope-database

14. Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel). 13 de julio de 2023;12(7):997.

Downloads

Published

2025-01-01

Issue

Section

Short communications

How to Cite

1.
Miló Valdés CA, Pérez Acevedo LC, Vitón Castillo AA. Utility of immunoinformatics in epitope mapping for vaccine and therapeutic design. eVitroKhem [Internet]. 2025 Jan. 1 [cited 2025 Dec. 27];4:152. Available from: https://evk.southam.pub/index.php/evk/article/view/152